Monotonicity-based inversion of fractional semilinear elliptic equations with power type nonlinearities

نویسندگان

چکیده

We investigate the monotonicity method for fractional semilinear elliptic equations with power type nonlinearities. prove that if-and-only-if relations between coefficients and derivatives of Dirichlet-to-Neumann map hold. Based on strong relations, we study a constructive global uniqueness inclusion detection Calderón inverse problem. Meanwhile, can also derive Lipschitz stability finitely many measurements. The results hold any \(n\ge 1\).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear Elliptic Equations with Generalized Cubic Nonlinearities

A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.

متن کامل

Semilinear fractional elliptic equations involving measures

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...

متن کامل

Semilinear fractional elliptic equations with gradient nonlinearity involving measures

We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2022

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-022-02299-0